Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Low Energy Electronic Structure of $Ce_{1-x}La_xSb$ (x = 0, 0.1) in the Magnetically Ordered States

Shin-ichi Kimura¹, Mitsuru Okuno², Hideki Iwata², Hideaki Kitazawa³, Giyu Kido³

- ¹ Grad. Sch. Sci. & Tech., Kobe University, Kobe 657-8501, Japan & PRESTO, JST, Japan
- ² Grad. Sch. Sci. & Tech., Kobe University, Kobe 657-8501, Japan
- ³ National Research Institute for Metals, Tsukuba, 305-0047, Japan

In order to investigate the electronic structures in the magnetically ordered states and the origin of the magnetic transition of $\text{Ce}_{1-x}\text{La}_x\text{Sb}$ (x=0,0.1), we measured the optical reflectivity and the magnetic circular/linear dichroism of the reflectivity spectrum in the infrared region at low temperatures down to 4 K under magnetic fields up to 14 T. The optical conductivity ($\sigma(\omega)$) spectrum derived from the reflectivity spectrum strongly varies with the change of the temperature and the magnetic field due to the magnetic phase transition. The $\sigma(\omega)$ spectrum reflects the electronic structure near the Fermi level, mainly the Sb 5p band and the Ce 5d band. The $\sigma(\omega)$ spectra in the ordered states cannot be explained only by the energy band folding due to the appearance of the ling periodic magnetic structure. In addition, the $\sigma(\omega)$ spectra cannot be explained only by using the pf mixing model. To explain the $\sigma(\omega)$ spectra, not only the pf mixing but also the mixing of the Sb 5p and the Ce 5d states after the pf mixing is important.